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Abstract. An investigation of two-time correlation functions is reported within the framework of (i)
stochastic quantum mechanics and (ii) conventional Heisenberg-Schrödinger quantum mechanics. The spec-
tral functions associated with the two-time electric dipole moment correlation functions are worked out
in detail for the case of the hydrogen atom. While the single time averages are identical for stochastic
and conventional quantum mechanics, differences arise in the two approaches for multiple time correlation
functions.

PACS. 03.65.-w Quantum mechanics – 03.65.Ta Foundations of quantum mechanics; measurement theory
– 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ states,
etc.) – 01.70.+w Philosophy of science

1 Introduction

While most working physicists pay homage to the Copen-
hagen interpretation of the Heisenberg-Schrödinger quan-
tum mechanics (QM), many others seek a more causal re-
interpretation. One ambitious effort in this direction has
its origin in the works of Bohm [1,2]. Bohm employed a
formalism for computing the paths for quantum mechani-
cal particles closely analogous to the method of Hamilton
and Jacobi. Nevertheless the Bohm approach [3–5], also
known as stochastic quantum mechanics (SQM), has been
thought to reproduce in all instances the same probability
distributions as does QM.

The research concerning SQM involves a considerable
number of authors dealing with various aspects, even if
not always within the terms as originally proposed by
Bohm [6]. Studies of extension of the Bohm approach
to the relativistic case are also available [7–11]. Notwith-
standing the relatively difficult nature of SQM computa-
tions, it is a generally accepted belief that, where a com-
parison is possible, SQM and QM would give the same
results. This is indeed the case for the average values of
observables at a fixed time.
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However, in a previous work [12], examples were re-
ported in which SQM produces results different from QM.
The examples involved the two-time correlation functions
of the electric dipole moment components in the hydro-
gen atom. Within SQM, an explicit numerical calculation
was performed [12] yielding the related spectral function
(Fourier transform of the two-time correlation function)
for the hydrogen atom in the excited state |nlm〉 = |211〉.
It was found to be quite different from the corresponding
quantity in QM.

Our purpose is to study in more detail the compari-
son between the frequency spectral functions in the two
theories. The general definition of two time correlation
functions (for a generic system described by a time inde-
pendent Hamiltonian H) is

ΦAB(t, t′) =
1
2
〈A(t)B(t′) +B(t′)A(t)〉 . (1)

The related noise spectral functions are defined as the
Fourier transform

SAB(ω) =
∫ +∞

−∞
eiωtΦAB(t)

dt

2π
. (2)

Sum rules for the functions SAB(ω) are investigated in
terms of their kth-order moments γ(k),

γ(k) =
∫ +∞

−∞
ωkSAB(ω)dω. (3)
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Taking up (for definiteness) the case of the electric dipole
moment p(t) = e r(t) of the hydrogen atom, the following
issues are addressed: (i) an explicit analytic form is de-
rived (in terms of modified Bessel functions) within SQM
for the noise spectral function of the electric dipole mo-
ments for the first few excited states, explicitly |nlm〉 =
|211〉 , |322〉 , |321〉 and |311〉. General formulas are
given for special combinations of quantum numbers, e.g.
|n, l,m〉 = |n, n− 1, n− 1〉 and |n, n− 1, n− 2〉; (ii) a
general proof is given concerning the asymptotic behav-
ior of the spectral functions of the dipole moment fluc-
tuations. As ω → ∞, the spectral functions vanish with
a power law for both QM and SQM, but with different
exponents; (iii) the moments of the spectral functions are
investigated both for QM and SQM, showing explicitly the
second order moment differences.

In Section 2 a brief review of the stochastic quantum
mechanics is provided and in Section 3 the general no-
tion of the two-time correlation function is defined. The
related spectral function is also introduced. In Section 4,
an explicit calculation is reported for the hydrogen atom
two-time correlation function of the electric dipole mo-
ment. The spectral function asymptotic behavior for large
frequency is discussed. Section 5 contains a discussion of
moment sum rules, and in the concluding Section 6 the
differences between QM and SQM are further explored.

2 The stochastic quantum mechanics
and particle trajectories

In SQM the wave function ψ(r, t) entering into the
Schrödinger equation,

i�
∂ψ

∂t
= Hψ, H = − �

2

2µ
∇2 + V, (4)

is conveniently written in the form ψ = ReiS/�. R and S
are real functions. SQM then provides a causal interpre-
tation for the two resulting coupled differential equations
thus obtained; i.e.

∂S

∂t
+

|∇S|2
2µ

+ V −
(

�
2

2µ

) ∇2R

R
= 0, (5a)

∂(R2)
∂t

+ ∇ ·
(
R2∇S

µ

)
= 0. (5b)

The first of the above two equations is of the Hamilton-
Jacobi form. This is generalized by the presence of a new
term which takes into account the quantum effects via the
quantum potential contribution

Q(r, t) = −
(

�
2

2µ

) ∇2R(r, t)
R(r, t)

. (6)

S is the SQM version of the Hamilton principal function.
The equations of motion are computed from

ṙ(t) = v(r(t), t), (7)

v(r, t) =
1
µ

∇S(r, t) =
�

µ
Im(ψ−1∇ψ) (8)

here v(r, t) is the velocity of the particle that passes
through the point r at time t.

Equation (5b) highlights the statistical character of the
theory and is interpreted as a continuity equation. As with
the classical statistical description, one introduces quanti-
ties which account for the particle properties of an ensem-
ble of identical systems (same Hamiltonian, same quantum
state, etc.) with trajectories. If the initial distribution
in configuration space ρ(r, t0) is assumed to be given
by ρ(r, t0) = R2(r, t0) = |ψ(r, t0)|2 then the distribu-
tion ρ(r, t) satisfies the continuity equation provided that
ρ(r, t) = |ψ(r, t)|2 at all times. This expresses the time in-
variance of the configuration-space measure “ρ(r, t) d3 r”.
The probability distribution in configuration space given
by ρ = |ψ|2 is called the quantum equilibrium distribution.
A system is then said to be in quantum equilibrium when
its configurations are randomly distributed according to
the quantum equilibrium distribution [4]. This is the so-
called quantum equilibrium hypothesis (QEH): if a system
is described by the wave function ψ then its configurations
are distributed according to ρ = |ψ|2.

The fact that R2(r, t) = |ψ(r, t)|2 is the probability
density that the particle is at r at time t holds true in
SQM, assures that one finds the same results as in QM.
The probability density |ψ(r, 0)|2 gives information on the
initial conditions necessary for the quantum Hamilton-
Jacobi theory to be applied, thereby allowing the deter-
mination of particle trajectories through equation (7).

In SQM, the probability density at time t is related
to particle trajectories. Closely analogous to classical sta-
tistical mechanics, starting from the initial distribution
ρ(r0, t0) = |ψ(r0, t0)|2, one has:

ρ(r, t) =
∫
d3r0δ [r0 − r(t, r0)] ρ(r0, 0) = |ψ(r, t)|2. (9)

Averaging the initial position r0 then yields the same av-
erage values of the corresponding operators in quantum
mechanics.

Consider the Hermitian operator Â = Â(r̂, p̂). In the
r representation, in a state ψ(r, t) = 〈r|ψ(t)〉, one has

〈Â 〉t =
∫
ψ∗(r, t)Â(r,−i�∇)ψ(r, t)d3r. (10)

That Â is Hermitian, allows the definition of a local expec-
tation value which, when integrated over all space, yields
the average value 〈Â〉. One defines

A(r, t) = �e
(
ψ∗(r, t)Â ψ(r, t)
ψ∗(r, t)ψ(r, t)

)
, (11)

such that
〈Â 〉t =

∫
A(r, t)R2(r, t)d3r. (12)

3 Two-time correlation functions

In the previous section it was shown how the two theories
(SQM and QM) are completely equivalent if one considers
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average values of operators at one fixed time. As already
anticipated above, in order to distinguish the two theories,
one needs to consider two-time dependent quantities such
as the correlation functions defined in equation (1). The
averaging procedure is specified in what follows for both
QM and SQM.

3.1 Stochastic quantum mechanics

As discussed in the previous section, the Bohm approach
is able to reproduce the density distribution at time t from
the initial probability distribution ρ(r0, t0) = |ψ(r0, t0)|2
at time t0 while still employing the notion of trajectories
(see Eq. (9)). For the time evolution of a general quantity
A, the quantum equilibrium hypothesis (QEH) gives (see
Eqs. (9) and (12)):

〈Â 〉t =
∫
ρ(r, t)A(r, t)d3r =

∫
ρ(r0, 0)A(

r(r0, t), 0
)
d3r0.

(13)
The average value of two operators depending on different
times is a generalization of equation (13). Given any two
dynamic variables, A(r, t) and B(r, t), the average value
of their product, weighed over the initial condition by the
weight function |ψ(r0, 0)|2 = ρ(r0), is just the SQM two-
time correlation function [13]; It is

ΦAB(t− t′) =
∫
ρ(r0)A(r, t)B(r, t′)d3r0, (14)

where B(r, t′) = B(r(t′, r0), 0
)

and similarly A(r, t) =
A(

r(t, r0), 0
)
.

3.2 Quantum theory

To simplify the notation, consider the case of a time inde-
pendent Hamiltonian with a discrete spectrum of eigen-
values

H |N〉 = EN |N〉 . (15)

In QM the two-time correlation function for a given state
|N〉 is

ΦAB
N (t− t′) =

1
2
〈N | Â(t)B̂(t′) + B̂(t′)Â(t) |N〉 , (16)

where (in the Heisenberg representation)

Â(t) = eiĤt/�Âe−iĤt/�. (17)

Consider the special case Â = B̂. Then equation (16) re-
duces to

ΦAA
N (t− t′) =

1
2
(
ΦAA

N+(t− t′) + ΦAA
N−(t− t′)

)
, (18)

where

ΦAA
N±(t− t′) =

1
2

∑
M

∣∣∣〈M | Â |N〉
∣∣∣2 e∓iωMN (t−t′) (19)

and �ωMN = (EM − EN ). The Hamiltonian being time
independent is reflected by the fact that the ΦAB

N depend
just on (t− t′).

The related noise spectral functions, defined as in
equation (2) in QM are easily found to be given by

SN (ω) = S+
N (ω) + S−

N (ω), (20)

with

S±
N (ω) =

1
2

∑
M

∣∣∣〈M | Â |N〉
∣∣∣2 δ(ω ∓ ωMN ). (21)

When |N〉 is the ground state only S+
N contributes for

ω ≥ 0. In general, SN (ω) is an even function of ω. Fur-
thermore, if the Hamiltonian has a spectrum with both a
discrete and a continuous part, then the sums in the above
equations (20, 21) clearly split into a corresponding sum
over the discrete part of the spectrum plus an integral
over the continuous one. It will prove useful in deriving
the asymptotic behavior of the QM noise spectral func-
tion SN (ω) (in the next section) to relate it to the Fourier
transform of the average of the time-ordered product; i.e.

αN (ω) =
i

�

∫ +∞

−∞
eiωt 〈N |T

[
Â(t)Â(0)

]
|N〉 dt, (22)

where “T ” denotes operator time ordering. The quantities
SN(ω) and αN (ω) are related by

SN (ω) =
�

2π
Im αN (ω). (23)

4 The electric dipole moment
and the hydrogen atom

4.1 Stochastic quantum mechanics

Consider the electric dipole moment along the x axis
dx(t) = ex(t). In the Bohm description, the two-time
correlation function of the electric dipole moment for a
generic excited eigenstate of the hydrogen atom with quan-
tum numbers (n, l,m) is given by equation (14); i.e.

Φnlm(t, t′) = 〈dx(t)dx(t′)〉nlm

=
∫
dx

(
r(t, r0)

)
dx

(
r(t′, r0)

)
ρnlm(r0)d3r0, (24)

where dx(r(t, r0)) = er0 sin θ0 cosφ(t). Using the hydro-
gen atom bound state wave functions and the solution to
the equations of motion in the Bohm description, given in
Appendix A, it is straightforward to derive the following
properties of the related noise spectral functions

Sn,l,m(ω) = Sn,l,m(−ω),
Sn,l,m(ω) = Sn,l,−m(ω),
Sn,l,0(ω) ∝ δ(ω). (25)
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Thus, without loss of generality, m > 0 and ω > 0 can be
assumed in the following discussion. For general quantum
numbers, one can derive:

Snlm(ω) =
cnml

128

(
e2a2

0

ω0

)
[zn,m(ω)]2(3+m)

×
∫ ∞

zn,m(ω)

e−ρρ2(l−m)[L2l+1
n+l (ρ)]2

(
[C(m+1/2)

l−m (ξ)]2

ξ

)
dρ,

(26)

where

ω0 = (�/µa2
0),

zn,m(ω) =
2
n

√
mω0

ω
,

ξ =

√
1 −

(
zn,m(ω)

ρ

)2

, (27)

cnlm =
[
n4(2l + 1)(l −m)!((2m− 1)!!)2(n− l − 1)!

2nm(l+m)![(n+ l)!]3

]
,

(28)
and C(m+1/2)

l−m (ξ) are the ultra-spherical Gegenbauer poly-
nomials [14] which satisfy the following relations:

C
(m+1/2)
l−m (1) =

(l +m)!
(2m)!(l −m)!

C
(m+1/2)
0 (ξ) = 1

C
(m+1/2)
l−m (ξ)

1 · 3 · · · (2m− 1)
=

(
d

dξ

)m

Pl(ξ), (29)

where Pl(ξ) is the Legendre polynomial.
A few special cases have been explicitly computed and

are here reported using Snlm(ω) to denote the noise spec-
tral function of equation (26) in units of (e2a2

0)/ω0:

SSQM
nlm (ω) =

(
e2a2

0

ω0

)
Snlm(ω),

n = 2

S211(ω) =
1

128

(ω0

ω

)4

z2,1K1(z2,1), (30)

n = 3

S322(ω) =
(

1
2187

)(ω0

ω

)5

z3,2K1(z3,2)

S321(ω) =
(

1
3888

)(ω0

ω

)4

z3,1 [2K1(z3,1) + z3,1K0(z3,1)]

S311(ω) =
(

1
243

)(ω0

ω

)4

z3,1

×
[(

5
8

+
z2
3,1

16

)
K1(z3,1) − 7

16
z3,1K0(z3,1)

]
, (31)

n (l = m = n − 1)

Sn,n−1,n−1(ω)= cn

(ω0

ω

)n+2

zn,n−1K1(zn,n−1)

cn =
1
8

(
2
n

)2n

(n− 1)n+1 [(2n−3)!!]2

2n[(2n−2)!]2
(32)

S211

S322

S321

S311

104

103

102

10

1

10−1

0 0.025 0.05 0.075 0.1 0.125

ω/ω0

Snlm

Fig. 1. Shown are four plots of typical spectral functions
Snlm(ω) = ω0S

SQM
nlm (ω)/(ea0)

2 for the electric dipole moment of
the hydrogen atom computed employing the stochastic quan-
tum mechanics.

n (l = n − 1, m = n − 2)

Sn,n−1,n−2(ω) = c̄n

(ω0

ω

)n+1

z2
n,n−2K2(zn,n−2)

c̄n = cn,n−1,n−2 [(2n− 1)!(2n− 3)!!]2

×4(n− 2)
128n2

. (33)

In the above expressions, Kn(z) are the nth order modi-
fied Bessel functions. It should be noted that the function
S211(ω) agrees exactly with the numerical computation
previously reported [12]. It has been verified that the par-
ticular results of equations (30) and (31) are consistent
with general formulas given in equations (32) and (33). In
Figure 1 we show the plots of some of the above explicit
examples.

Asymptotic behavior

From equation (26) it is possible to derive for general
quantum numbers the asymptotic behavior at large fre-
quencies of the SQM noise spectral function; it is

SSQM
nlm (ω) → Cnlm

(
e2a2

0

ω0

)(ω0

ω

)3+m

as ω → ∞, (34)

where

Cnlm =
cnlm

128

[
C

(m+1/2)
l−m (1)

]2
(

4m
n2

)3+m

×
∫ ∞

0

e−ρρ2(l−m)
[
L

(2l+1)
n+l (ρ)

]2

dρ. (35)

Thus, noise spectral functions vanish as ω → ∞ with a
power law. The exponent is related to the state’s quan-
tum numbers by (3 + m). The explicit cases considered
above can easily be shown to agree with equation (34).
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One may use the expansion of the modified Bessel func-
tions for small values of the argument [14], i.e. as z → 0

Kν(z) →
{

(1/2)Γ (ν)(z/2)−ν if ν 
= 0,
− ln(z) if ν = 0. (36)

One then infers the large ω → ∞ behavior of the spectral
functions; i.e.

SSQM
nlm (ω) →

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1/128)
(ω0

ω

)4

for state |211〉 ,
(1/2187)

(ω0

ω

)5

for state |322〉 ,
(1/1944)

(ω0

ω

)4

for state |321〉 ,
(5/1944)

(ω0

ω

)4

for state |311〉 .

(37)

4.2 Quantum mechanics

As anticipated at the end of Section 3, in order to derive
the asymptotic behavior of the QM noise spectral function
it proves useful to work with the “time ordered propaga-
tor” defined in equation (22) and use equation (23) to
find SN (ω). The function αN (ω) can easily be connected
with the (retarded) Green’s function of the Schrödinger
equation; i.e.

Gret(r2, r1;ω) = − i

�

∫ ∞

0

〈r2| ei{ω−(H/�)}t |r1〉 dt. (38)

The time ordered response function α(AB)
N (ω) is related to

the Green’s function Gret(r2, r1;ω) via

−α(AB)
N (ω) =

∫
d3r1

∫
d3r2 〈N |A(0) |r2〉

×Gret

(
r2, r1;

EN

�
+ ω

)
〈r1|B(0) |N〉

+
∫
d3r1

∫
d3r2 〈N |B(0) |r2〉

×Gret

(
r2, r1;

EN

�
− ω

)
〈r1|A(0) |N〉 .

(39)

The retarded Green’s function associated to the Hamilto-
nian H , as defined in equation (38), satisfies the differen-
tial equation

(�ω −H(r2))Gret(r2, r1;ω) = δ(r2 − r1), (40)

where H(r2) = −(�2/2µ)∇2
(r2)

− (Ze2/r2) denotes a one
electron Coulomb system. The differential equation of the
non-relativistic Coulomb Green’s function (in the stan-
dard normalization) is [15–17]
{
∇2

(r2)
+

(
2kν
r2

)
+ k2

}
G(r2, r1;ω) = δ(r2 − r1), (41)

where k =
√

(2µω/�) and ν = 4π�
2/(Zµe2k).

The Green’s functions appearing in equations (38)
and (41) are related by a normalization constant
Gret(r2, r1;ω) = (2µ/�2)G(r2, r1;ω). A closed expression
of the Coulomb Green’s function in terms of Whittaker
functions [14] has been given by Hostler [15] as

G(r2, r1;ω) = − Γ (1 − iν)
4π|r2 − r1|

× det
(Wiν;1/2(−ikα2) Miν;1/2(−ikα1)
Ẇiν;1/2(−ikα1) Ṁiν;1/2(−ikα2)

)
(42)

where the dots over the Whittaker functions denote dif-
ferentiation with respect to their arguments and

α2 = r2 + r1 + |r2 − r1|
α1 = r2 + r1 − |r2 − r1|. (43)

Asymptotic behavior

The aim of this section is to derive the asymptotic form
of the noise spectral functions as ω → ∞. Using equa-
tion (39) requires the Coulomb Green’s function in the
regime ω → ∞ (respectively ω → −∞). In this limit,
k → ∞ (respectively k → i∞). Also ν → 0 so that equa-
tion (41) reduces to the differential equation of the free
particle Green’s function G0(r2, r1;ω). Indeed, from the
exact solution in equation (42), it is possible to show ex-
plicitly that as |ω| → ∞

G (r2, r1;ω) → G0 (r2, r1;ω) = − eik|r2−r1|

4π|r2 − r1| . (44)

This proves that the exact Coulomb Green’s function has
an oscillatory behavior at large positive frequencies and
an exponentially damped behavior at large negative fre-
quencies:

−4π|r2 − r1|G → ei|r2−r1|
√

2µω/� as ω → +∞,

−4π|r2 − r1|G → e−|r2−r1|
√

2µ|ω|/� as ω → −∞. (45)

Inserting this result into the central equation (39), one
finds that only the first term survives; i.e. for ω → ∞

(�2/2πµ)α(AB)
N (ω) →

∫
d3r1

∫
d3r2 〈N |A(0) |r2〉

× eik|r2−r1|

|r2 − r1| 〈r2|B(0) |N〉 . (46)

where it is to be recalled that k =
√

(2µω/�).
The above considerations can be readily applied to the

case of the electric dipole moment in the hydrogen atom
with A(0) = B(0) = ex. As ω → ∞

α
(xx)
N (ω) → µe2

2π�2

∫
d3r1 d

3r2 ψ
∗
N (r2)x2

× eik|r2−r1|

|r2 − r1| x1 ψN (r1). (47)
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Using the above in equation (23), the asymptotic expres-
sion for the electric dipole moment spectral function is
derived; i.e.

S
(xx)
N (ω) → e2

4π2a2
0ω0

Im
∫
d3r1

∫
d3r2 ψ

∗
N (r2)

× x2
eik|r2−r1|

|r2 − r1| x1 ψN (r1). (48)

With |N〉 = |nlm〉, the hydrogen atom wave functions
are written as ψnlm(r) = χnl(r)Ylm(θ, φ). One may also
employ the expansion

eik|r2−r1|

|r2 − r1| = (4πik)
∞∑

l=0

jl(kr<)h(1)
l (kr>)

×
l∑

m=−l

Y ∗
lm(θ1, φ1)Ylm(θ2, φ2), (49)

where r< = min(r1, r2) and r> = max(r1, r2). The noise
spectral function then has the asymptotic limit

S
(xx)
nlm (ω) → e2

πω0a2
0

Im

{
ik

∞∑
l′=0

Cl′
lm

∫ ∞

0

∫ ∞

0

dr1dr2 (r2r1)3

× χnl(r2)jl′(kr<)h(1)
l′ (kr>)χnl(r1)

}
, (50)

with the constants C(l′)
lm defined as

C
(l′)
lm =

+l′∑
m′−l′

∣∣∣∣
∫
Y ∗

l′m′(θ, φ) sin θ cosφYlm(θ, φ)dΩ
∣∣∣∣
2

.

(51)
When taking the imaginary part in equation (50), only
the function h(1)

l′ (kr) is complex [14];

Im
{
ih

(1)
l′ (kr)

}
→ jl(kr) =

√
π/(2kr)Jl+1/2(kr). (52)

Therefore, the noise spectral function as ω → ∞ reads

S
(xx)
nlm (ω) →

(
e2

2ω0a2
0

)

×
∞∑

l′=0

C
(l′)
lm

∣∣∣∣
∫ ∞

0

r5/2χnl(r)Jl′+1/2(kr)dr
∣∣∣∣
2

. (53)

The radial integral in the above expression can be evalu-
ated in the limit of high frequencies and is found to vanish
as (ka0)−(4+l+1/2). Indeed, using the hydrogen wave func-
tions reported in the appendix, one finds

Inll′ =
∫ ∞

0

√
r

(
r

a0

)2

χnl(r)Jl′+1/2(kr)dr

= − 2
n2

(
(n− l − 1)!
[(n+ l)!]3

)1/2 1
(ka0)(4+l−1/2)

(
2
n

)l

×
∫ ∞

0

dxx(3+l−1/2)e−(x/nka0)

×L2l+1
n+l (2x/nka0)Jl′+1/2(x). (54)

When k → ∞ the Laguerre polynomial can be replaced
by the constant value that it takes for a vanishing argu-
ment L2l+1

n+l (0). The remaining integral is tabulated (see
Eq. (6.621) in [18]) and one finds

Inll′ ≈− 2
n2

(
(n− l − 1)!
[(n+ l)!]3

)1/2 1
(ka0)(4+l−1/2)

×
(

2
n

)l

L2l+1
n+l (0)Γ (l+ l′ + 4)

×
{
P

−(l′+1/2)
3+l−1/2 (0)+

1
nka0

[
d

dx
P

−(l′+1/2)
3+l−1/2 (0)

]}
, (55)

where P ν
µ (x) are the associated Legendre functions of the

first kind. One should note that for the sum in equa-
tion (53) only few terms are non-vanishing. This is related
to well known electric dipole selection rules which apply
when calculating the quantities

C
(l′)
lm =

l′∑
m′=−l′

|〈l′m′| sin θ cosφ|lm〉|2,

i.e.

〈l′m′| sin θ cosφ |lm〉 
= 0 only if
{
m′ = m± 1
l′ = l ± 1. (56)

Applying the selection rule, l′ = l ± 1, it turns out that
P

−(l′+1/2)
3+l−1/2 (0) vanishes for any l, while its first derivative

at zero is always finite (see Eqs. (8.6.1) and (8.6.3) in [14]).
This completes the proof of the asymptotic behavior of the
noise spectral functions in QM. Taking into account that
ka0 =

√
2ω/ω0, one finally concludes that for ω → ∞,

SQM
nlm(ω) →

(
e2a2

0

ω0

)
C′

nlm

(ω0

ω

)4+l+1/2

, (57)

where

C′
nlm =

2
n4

∑
l′=l±1

C
(l′)
lm

(n− l − 1)!
[(n+ l)!]3

[L2l+1
n+l (0)]2

×
{
Γ (l + l′ + 4)
n(
√

2)4+l+1/2

[
d

dx
P

−(l′+1/2)
3+l−1/2 (0)

]}2

. (58)

When comparing equation (57) with equation (34) a dif-
ference in the two descriptions, SQM and QM is made
very clear. As ω → ∞, SQM predicts for noise spectral
functions in state |nlm〉 to decrease at large frequencies
as ω−(3+m) and QM as ω−(4+l+1/2).

5 Sum rules: moments of the noise spectral
functions

In highlighting possible differences between the predic-
tions of quantum mechanics and the stochastic quantum
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mechanics, it proves useful to study some global proper-
ties of the spectral function, e.g. sum rules. The zeroth
order moment is readily evaluated,

γ(0) =
∫ +∞

−∞
SAA(ω)dω

=
∫ +∞

−∞

∫ +∞

−∞
eiωtΦAA(t)

dωdt

2π

= ΦAA(0) =
〈
A2(0)

〉
. (59)

The zeroth moment γ(0) is nothing more than the aver-
age value of

〈
A2

〉
at time zero and it is the same in QM

and SQM. For the special case under consideration this
assumes the value

〈
x2(0)

〉
nlm

γ
(0)
nlm =

a2
0

4
n2

[
5n2 + 1 − 3l(l+ 1)

]

×
[
1 − (l +m+ 1)(l −m+ 1)

(2l + 1)(2l+ 3)
− (l +m)(l −m)

(2l + 1)(2l− 1)

]
.

(60)

On the contrary, the calculation of the second order
moment γ(2) (again in both theories) shows the first dis-
crepancy between QM and SQM. The computation of the
second order moment can be related to the second deriva-
tive of the two-time correlation function calculated at
τ = t− t′ = 0. Indeed repeated integration by parts yields

ω2SN (ω) = −
∫ +∞

−∞
eiωτ d

2ΦN (τ)
dτ2

(
dτ

2π

)
. (61)

Thus

γ
(2)
N =

∫ +∞

−∞
ω2SN (ω)dω = −

(
d2ΦN (τ)
dτ2

)
τ=0

. (62)

5.1 Stochastic quantum mechanics

In the stochastic quantum mechanics from equations (24)
and (A.6) one has

−d
2ΦN (τ = 0)

dτ2
=

(
m�e

µ

)2

〈nlm| cos2 φ
r2 sin2 θ

|nlm〉 (63)

so that

γ
(2)
(SQM)nlm =

e4

2µa0

(m
n3

)
. (64)

In QM one obtains

−d
2Φnlm(τ = 0)

dτ2
=
e2

2
〈nlm| {ẍ(0), x(0)} |nlm〉 . (65)

Using the Coulomb Hamiltonian H = (p2/2µ) − (e2/r)
one may deduce the following commutators:

ẋ =
i

�
[H,x] =

px

µ
,

ẍ =
i

�
[H, px] = −

(
e2

µ

)
x

r3
, (66)

so that

−d
2Φnlm(τ = 0)

dτ2
= − e4

2µ
〈nlm| x

2

r3
|nlm〉 (67)

and

γ
(2)
(QM)nlm =

(
e4

µa0

1
n2

)

×
[
1 − (l +m+ 1)(l−m+ 1)

(2l+ 1)(2l+ 3)
− (l +m)(l −m)

(2l + 1)(2l− 1)

]
,

(68)

which is quite different from the expression obtained in
the Bohm theory, equation (64). Clearly the differences
found in the second order moment imply rigorously differ-
ent spectral functions.

5.2 Semi-classical limit

It is interesting to see how the two quantities which are dif-
ferent for general quantum numbers have the same semi-
classical limit for large values of the quantum numbers
n, l and m. Setting the maximum orbital momentum
l = m = n− 1 one finds that

γ
(2)
(SQM)n,n−1,n−1 =

(
e4

2a0µ

)
(n− 1)
n3

, (69)

γ
(2)
(QM)n,n−1,n−1 =

(
e4

2a0µ

)
1

n(n+ 1/2)
. (70)

In the limit of large values of n the two theories agree; i.e.

lim
n→∞

{
n2γ

(2)
n,n−1,n−1

}
=

(
e4

2a0µ

)
(71)

for both QM and SQM as expected.

6 Conclusions

In this work the predictions of the stochastic and conven-
tional quantum mechanics have been compared in some
detail with respect to the two-time correlation functions.
The example of interest in this work is the dynamic evo-
lution of the electric dipole moment within the hydrogen
atom. Previous numerical computations [12] of the SQM
spectral function for the first excited state |211〉 have been
confirmed. In addition closed expressions have been ob-
tained in terms of modified Bessel functions Kn(z), for
several excited states with special combinations of quan-
tum numbers. A derivation is provided of the asymptotic
form (as ω → ∞) of the noise spectral functions for both
QM and SQM. For large frequencies the two descriptions
provide different power law behavior. For the hydrogen
atom bound states |nlm〉 the SQM spectral functions scale
∝ω−(3+m) as opposed to the QM spectral functions which
scale ∝ω−(4+l+1/2).



240 The European Physical Journal B

The difference in the noise spectral functions is re-
flected in different sum rules which are obeyed by the
spectral functions. Explicit exact evaluations of the sec-
ond order moment of the spectral functions γ(2), as in
equation (3), show that the two descriptions predict in-
deed different values.

Finally by considering, for example, the interaction of
an hydrogen atom with the field of an electromagnetic
wave, it is possible to relate the noise spectral functions
within an excited state to a total absorption cross-section
by the relation σN

tot(ω) = 8π2α
QED

[ω SN (ω)] as shown in
detail in the Appendix C.

Let us briefly comment on the different predictions
just so pointed out between conventional quantum me-
chanics and trajectory based interpretations of stochastic
nature (Bhom or Nelson). It is certainly worthwhile to
mention here a recent work [19] where the author shows
that trajectory based interpretations of quantum mechan-
ics are incomplete. This happens for systems with un-
bounded Hamiltonians. In particular it is shown that for
particular systems (providing explicit examples) there ex-
ist states of finite energy for which the decomposition of
the Schrödinger equation into a continuity and modified
Hamilton-Jacobi equation is impossible. These examples
are also shown to be connected to the fact that the cor-
responding state wave functions exhibit fractal properties.
The main conclusion of reference [19] is that quantum me-
chanics goes where trajectory interpretations do not follow
despite their (in principle) duty to do so. So one might
wonder whether the results found in the present work re-
garding two-time correlation functions are to be ascribed
to such incompleteness of stochastic approaches to quan-
tum mechanics. We can just remark that the states con-
sidered here to evidence differences in the predictions of
the two theories are the bound states eigensolutions of
the hydrogen atom Hamiltonian (|ψnlm〉) and as such do
not have the properties required in [19] to highlight the
supposed incompleteness of stochastic QM (i.e. undefined
Hψ, but with finite average energy). It would certainly
be interesting to consider the possibility to construct such
states for the hydrogen atom but this deserves further
investigation, and goes beyond the scope of the present
work. Were it possible to confirm this connection it would
leave little doubt on the authors’ minds as to which of the
two theories would have to be ruled out.

The authors would like to thank the referee for bringing to
their attention the interesting work of M. J. W Hall [19] about
unbounded Hamiltonians. A.W. would like to thank the Dipar-
timento di Fisica, Università di Perugia and I.N.F.N. Sezione
di Perugia for hospitality and support while this work was in
progress.

Appendix A: The Bohm description
of the hydrogen atom

A stationary eigenstate of the Schrödinger equation for
the hydrogen atom is written as

ψnlm(r, t) = χnl(r)Ylm(θ, φ)e−iEnt/� (A.1)

where

χnl(r) = −
(

2
n2

)[
(n− l − 1)!
a3
0[(n+ l)!]3

]1/2

ρle−ρ/2L2l+1
n+l (ρ),

ρ = (2r/na0),

Ylm(θ, φ) = NlmP
|m|
l (cos θ)eimφ, (A.2)

L2l+1
n+l (ρ) are the associated Laguerre polynomials and

P
|m|
l (cos θ) are the associated Legendre functions [14].

Equation (A.1) can then be written as

ψnlm(r, t) = Nlmχnl(r)P
|m|
l (cos θ)e(i/�)(�mφ−Ent),

(A.3)
where Nlm, χn,l(r) and P |m|

l (cos θ) are real. Thus, the dy-
namics of the system in the Bohm description is provided
by the quantum action

S(r, θ, φ, t) = �mφ− Et. (A.4)

The equations of motion (7) are [20]

vr = ṙ =
1
µ

(
∂S

∂r

)
= 0,

vθ = rθ̇ =
1
µr

(
∂S

∂θ

)
= 0,

vφ =
1

µr sin θ

(
∂S

∂φ

)
= r sin(θ)φ̇

=
m�

µr sin θ
. (A.5)

These can be integrated yielding

r(t) = r0, θ(t) = θ0

and

φ(t) = φ0 +
(

m�t

µr20 sin2 θ0

)
. (A.6)

Appendix B: Second order moment
in the stochastic quantum mechanics

Let us here consider the calculation of the moments in
SQM. According to the definition given in equation (3)
for the state |211〉 (and for even n) one has

γ
(n)
SQM =

(
e2a2

0

64ω0

)∫ ∞

0

ωn
(ω0

ω

)9/2

K1

(√
ω0

ω

)
dω. (B.1)

Using the change of variable x =
√
ω0/ω, one finds

γ
(n)
SQM =

(
e2a2

0

32

)
ωn

0

∫ ∞

0

x(6−2n)K1(x)dx. (B.2)

This yields

γ
(0)
SQM = 12(ea0)2

γ
(2)
SQM =

(
(ea0ω0)2

16

)
=

(
e4

16µa0

)
. (B.3)
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Appendix C: Hydrogen atom interacting
with the field of a plane electromagnetic wave

Let H0 denote the hydrogen atom hamiltonian and sup-
pose to have an atom in one of his stationary eigen-states
(|N〉) at t = t0

|Ψ(t0)〉 = |N〉 (C.1)

interacting with the electric field of a plane wave of fre-
quency ω:

Vint(t) = E(t) · d
E(t) = E0εx cos(kz − ωt) (C.2)

the electric field component of the plane wave assuming
that it is traveling in the z direction with momentum k =
ω/c and d = ex is the dipole operator.

The full hamiltonian is therefore:

H = H0 + Vint(t). (C.3)

The quantity we would like to study is the total transition
probability per unit time given that the system is initially
in the state |N〉 at time t = t0. Let us compute first the
total transition probability W transition

N (t) at time t, given
the initial condition in equation (C.1). At time t the sys-
tem will be in the state |Ψ(t)〉 obtained from the state |N〉
by application of the evolution operator (i.e. solving the
Schrödinger equation for Ψ). Thus the probability PN (t)
that at time t the atom is still in the state |N〉 is given by:

PN (t) = | 〈N |Ψ(t)〉 |2. (C.4)

Conservation of probability requires that:

PN (t) +W
(transition)
N (t) = 1. (C.5)

In this problem the interaction has an explicit time de-
pendence and so it is useful to resort to the interaction
representation:

|Ψ(t)〉 = U(t, t0)|Ψ(t0)〉
U(t, t0) = Te

+ i
�

∫
t
t0

dt′V ′
int(t

′)

V ′
int(t

′) = e+
i
�

H0t′Vint(t′)e−
i
�

H0t′ (C.6)

where T stands for time ordering.
Thus the probability of being in the state |N〉 at time

t is given by:

PN (t) = | 〈N |U(t, t0) |N〉|2. (C.7)

In second order perturbation theory the amplitude of re-
maining in the state |N〉 at time t is:

〈N |U(t, t0) |N〉 = 1 − i

�

∫ t

t0

dt′〈N |V ′
int(t

′)|N〉

− 1
2�2

∫ t

t0

∫ t

t0

dt′dt′′〈N |T [V ′
int(t

′)V ′′
int(t

′′)] |N〉. (C.8)

The dipole interaction we are considering does not con-
tribute at first order since 〈N |d|N〉 = 0 for any eigenstate
of the hamiltonian H0 (hydrogen atom). Thus:

〈N |U(t, t0) |N〉 = 1 −ΣN

ΣN =
1

2�2

×
∫ t

t0

∫ t

t0

dt′dt′′〈N |T [V ′
int(t

′)V ′′
int(t

′′)] |N〉
PN (t) = 1 − 2�(ΣN ). (C.9)

Comparing this last equation with equation (C.5) one
finds for the total transition probability W transition

N (t) =
2�(ΣN) = 2Im(iΣN ) or:

W transition
N (t) =

Im
{

+
i

�2

∫ t

t0

∫ t

t0

dt′dt′′〈N |T [V ′
int(t

′)V ′′
int(t

′′)] |N〉
}
.

(C.10)

Now let us insert the explicit form of the dipole interaction
given in equation (C.2). The fact that the wave is assumed
to be x-polarized selects the x component of the dipole
operator εx · d = dx = ex and:

V ′
int(t) = eE0 x(t) cos(kz − ωt)
x(t) = e+

i
�

H0tx(0)e−
i
�

H0t. (C.11)

Inserting the above expression of Vint(t) in equa-
tion (C.10) we also adopt the so called long wavelength ap-
proximation which consists in neglecting the z-dependence
in the interaction. This is justified so long as ka0  1 be-
ing a0 the Bohr radius. Thus one gets:

W transition
N (t) = Im

{
+

i

�2
(eE0)2

×
∫ t

t0

∫ t

t0

dt′dt′′ 〈N |T [x(t′)x(t′′)] |N〉 cos(ωt′) cos(ωt′′)

}

(C.12)

Then note that defining τ = t′ − t′′ and t+ = t′ + t′′ one
has:

cos(ωt′) cos(ωt′′) =
1
2

[cos(ωτ) + cos(ωt+)]

〈N |T [x(t′)x(t′′)] |N〉 = 〈N |Tτ [x(τ)x(0)] |N〉 (C.13)

where Tτ stands for time ordering relative to the τ vari-
able. Then define t0 = −T/2 and t = +T/2, change the
integration variables according to dt′dt′′ = (1/2)dτdt+ to
obtain:

W transition
N (T ) = Im

{
+

i

�2

(eE0)2

4

×
∫ +T

−T

∫ +T

−T

dτdt+〈N |T [x(τ)x(0)] |N〉[cos(ωτ)+cos(ωt+)]

}
.

(C.14)
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Now the time integration over the variable t+ is readily
done:

W transition
N (T ) = Im

{
+

i

�2

(eE0)2

4

×
∫ +T

−T

dτ 〈N |Tτ [x(τ)x(0)] |N〉

×
[
2T cos(ωτ) +

2
ω

sin
(
ωT

2

)]}
. (C.15)

And the total transition probability per unit time
wtransition

N (in the limit of infinite times) is extracted:

wtransition
N = lim

T→∞
W transition

N (T )
T

=

Im

{
+
i

�2

(eE0)2

2

∫ +∞

−∞
dτ 〈N |Tτ [x(τ)x(0)] |N〉 cos(ωτ)

}
.

(C.16)

Finally it is easily shown that:

〈N |Tτ [x(−τ)x(0)] |N〉 = 〈N |Tτ [x(τ)x(0)] |N〉 (C.17)

and hence:

wtransition
N = Im

{
+

i

�2

(eE0)2

2

×
∫ +∞

−∞
dτ e+iωτ 〈N |Tτ [x(τ)x(0)] |N〉

}
. (C.18)

Thus defining the time ordered “propagator” by:

αN (ω) =
i

�

∫ +∞

−∞
dτ e+iωτ 〈N |Tτ [x(τ)x(0)] |N〉 (C.19)

one writes the total transition probability per unit time as:

wtransition
N =

(eE0)2

2�
Im [αN (ω)]. (C.20)

This total transition probability when normalized to the
flux of incident photons defines a total transition cross-
section σN

tot(ω) (adsorption and possibly stimulated emis-
sion, if the state |N〉 is an excited state):

σN
tot(ω) =

8π�ω

cE2
0

wtransition
N (C.21)

or:

σN
tot(ω) = 8π

ω

c

e2

2
Im [αN (ω)]. (C.22)

On the other hand we have shown, cf. equation (23) that
the imaginary part of αN (ω) is directly related to the spec-
tral function (Fourier transform) of the two-time correla-
tion functions:

�

2π
Im [αN (ω)] = SN (ω)

=
∫ +∞

−∞
dτ e+iωτ 1

2
〈N |[x(τ)x(0) + x(0)x(τ)]|N〉.

(C.23)

We therefore conclude:

σN
tot(ω) = 8π2α

QED
[ω SN (ω)] (C.24)

α
QED

= e2/(�c) ≈ 1/137 being the fine structure con-
stant.
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